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nrno cr.x0s

The expandlns uses of coaq_osiCe materials, @6peclally .e ._.

fiLmencary type, require the $oneracton of s variety of dace on

m_cerial behavior so chac adequate desisn can be t-hleved. Nany

cesc technique8 have been developed for 0._,,_ pur-_s_. _'"eA.... *_-o-.,._o.

are the nondestructive evaluaC£on (NDE) techniques of ulcrason£cs

and acoustic emlss£on.

The application and interpretation of results obc&Inad fr_ "_':ri_u_

NDE cec_tques are stronsly related to the szress wave =,ropsS_cion

characterisCi_s of the mtceriaZ. The theoretical prediction of the

access rave fields under the action of yell defined _xclr_clon c_n

8ive information resardinS the proper use of the ,qDE techniques, and

may provide J_proved precision of • lacertal'i d/_noeis by

escabllshlnS more quancltative standards.

Via an asymptotic approxi,*at£on, the stress wave field Keneraced

by a point source in an in_inlce anlsocroplc :edlum can be descr£bed

_n anaioSy _rtch the problem of masnecohydrc_y'_-c _._v_ _" .......

by Llghchtll [i]. For the present work, the particular case of

cransverse-ty tsotropic media is presented by follovin$ c.he same

procedure used by Buchvald [2], _:_ere hera =he --'"*_- _" "_'-_'_Dq_dkt6tndb_&6 _P q_d_t.V_6_q6_6

such ChaC the dLsplaceuen_s are obtained and expressed in carcesi&n

-'01_i.

Here. the soluClon iS glven for the c_se of a s-o-="_"" _:':'""_-,_
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reLuforced epoxy unLdirectlon_ eouoeite. The slx,mese and wave

surfaces are detemined as yell as the displacesumt8 for points

throushout the medium. Polar d_tSran8 for dispZacmnent mtplitude8

are constructed 111ustrat£n8 the patterns o£ the dispZeceaenc _£eid.

Other aspects of the probZeu o£ stress raves Ln homoseueous

anisotropic ued£a can be found in the studies o£ Sy_e [3], Carrier

[4} and Mussrave [5]. Synge analyzed the behavior of stress raves

£n a sinsle layer of anisotropic --ter£al subjected to un£forn stress

at one of its surfaces m_l extended the study to the llnltin8 case

uhere the layer /s transforusd in¢o a half space. Carrier proposed

a solution for vavej in m infinite nedtun using potential functi_.s

and £uteSral techniqu_. Mntsrave established the conditions to he

_st£sfied for the existemcs of the general equation of mot4on

uhen a plane trove solution ts adopted end described _._ g_e*.ry _.¢

the spreadin8 d/Jsturbancas by me_ of the rave surfaces and

siotnless surfaces.

The work on layered uedia was carefully expILored but yes not

pursued for thls research. The prlmtry reason for thl8 is that

sahara1 misotrol_ is a sore convenient approach for represent inS

a composite becm_e the effective sodulus theory can be used ,.o

sodel the uatarial as houoSeneous [6]. It is aas_ed that the

•-,ter:La], behaves as homogeneous since the layer thicknesses (fiber

dimneter for filmmn_ary composites) are snail as coupared _Lth the

wavelengths. If this requirement is satisfied, the effective
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nmiulus theory appears to describe the behavior of stress raves in

lan_usted _slt_ better than the l_tbma_ _ia t_6_ [7 _",OJ.
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 l', .zzm m ,urn sm..ozzaw

A schemstAc of the syst_ under !nve-tLI;a_4. __ _s .h

An inflntte tranmrsely tsotroptc aedim is subjected to • polnt

force source vh£ch generates stress raves that propagate throushout

the uedltm. A cartesian coordlnate sTs:e: x, y ._.--_ z .0"- ---r---'_""_ =-_,,....

chat the x-y pZane is the Leotropic plane in the aedtul. In 8

unidirectional cm_osite, z vould be the fiber direction. The point

source is located at the OttgLI; aud osc11Za_et; ".r, _._ X u.Le_u, e=

sho_u. The displacts_ts at any point ? in the _ediuR due to 8

steady-state sinusoi_l point force excitation ere mmlyzed.

rorct- ru ¢

The force-d_maatc equatlons for an infinite uediua can be derlved

_JeJ _M_i*4 _ • war*lJ ._404)04 ,_ 641 aaNmemfrom the equilLbrtms condltlo-.m Of a .._...._._ ._,_,_,...,. ,,_,_,,.

and are S£v_ as [ 9]

0uj,tt " _£J,£ + c Fj
(i)

vhere the implied sumatlou is over the repeated subscr£pts, 0 Is the

:ass densi_, the indices I and J hays values x, y and z In •

reccan8ular carteslan coordtmtce systes, _j£.- the d!sp!ecemen_. _ the

J direction, _lJ is the stress tensor and _:j £s the body force (force

per unlt mass) in the J dlrectlon. The Indices £ollotring the cou:a
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refer co partial derivaCiTes such chac uj ,CO represents che second

derXvtcive of the jch component of displacement _£Ch respect: co c,

the c£ue variable.

For the polnc slnusoldal force sho_m in FXS. i, the body

forces can be vrtccen :In exponential fom as

Fx - Fo 5(x)5(y)6(z) • "_c and Fy - Fz = 0

(2)

where t - (-1), w £s the radtam freq_c7 of the ho,,.,_++ ...._4...+^.

+( ) Is mhe Dirac delta function and F te the force mpllcude. Theo

actual osc_llatory force £s oaken as the real part of the empress£oa

for Fx tn eqn. (2).

Conscicuc£ve Relations

The constitutive relaclo._g based ..^- Hook_'s !_v _._--- ,--,rlnl

xlj = Cljpq _q
(3)

where C1jpq are cl_ elasc£c coef£1clencs chac conscltuCe the sclffness

macrlx and ¢ is the strata censor chac can expressed _n ceres of
Pq

dlsplacements uslnS the en_ineer_ definiClon8 for Jcra_as as

z (4)
_pq - ._-(Up,q + Uq,p)

where the suffJ.xes each represent :,_ z, y --_ _"o,,, z _re::1ons .....

-5-



eluCAc coefficXents ucisfy the sy_eCry condlctonm such thac [11]

C_jpq " CjL M " C_jqp = Cpq_j (5)

The four indices notation for the eZastic coefficients can be

modif£ed co the cvo £ndices compacC form [9]. Io this case, _8

stress censor Is written as a vector

:1 " [_1' x2' _3' r4' TS' T6] (6)

vhere the equivalence in the cartesXan eystam tm T1 - rzx, r 2 - Tyy,

:3 " rzz' T4 " xLz' rS " :yz' r6 " TxT" The sane correspondence

is applicable for the straL_.

For • Crmmversely J4ocropic medium an shmm in Y_4g. l, where

the x - y plane is the imtropie plane, z is the s_metry axis

of the medium. XC can be shmm that for transversely isotropic

materials, there are five JJadalMmdeac elJstlc coeffic£ents [11].

The nonzero elasctc coefficients accordin8 co the defin£c£on of

the stress components in eqn. (6) are

Cll = C22, C33, C12, C13 - C23, C44 - C55 and C66 2 " _12 /

(7)

ConscrainCs

The conscralnts aye Lucroduced by the appl£caclou of cha

"rad_aciou condicLon'. Since CbemadluJ is tnflnlce, the constraint
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is that no m or/stnate at infinity or are r_lected at Infinity;

that is, cha only source of disturbance _s due to the point force

located ac the orJd_lu of the coordi=mce system. From this

assuapclon, the a_plicudes of cbe displacements muse deczease with

dlscance from the source. In the lflsic, as the dlscance approaches

_nfinlcT, the dtsplac_C msplicudes muse vanish.

EquJctons Of Hoclon

The equations of moc£on can be repruenced in Ceres of Ohm

d£splacemancs by subsciCuC_ aqus. (4) and ($) Into eqn. (3) and

ohm mabeclcucms the result 1_Co eqn, (1) Co S_tve [10]

;uj.tc - CtJpq Up,qi + 0 Fj (8)

vheze the symetry condition $£ven in equ. (5) J.s ucillzed. The

forcln s fuacclon ts as slven in eqn, (Z). For s crab.aver_seXy

£sotroptc medt=m, the elasczc coefficients obey eqn. (7).

Solution of Equations ?_ .qocton

The equat£ons o£ motlon are given In eqn. (8) and must be

solved in accordance wlch che _aposed constraJ.uts and £he applied

forces ducrlbed earlier.

Eqn. (8) can be rmrriCten using u, vandv for the

displacements in the x, y and z directions, respectively, instead

of ux, uy and Uz; and uslng x, y and z for the _ubscrIp_8 d__uoc_ine

-7-
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derivatives. Th_ gives three equations in u, v and v. Then

these equations can be d_fereutiatod v£th respect to the spa:e

an_ cite var_bles co g£ve ceru in U,tr.z, u,tt7 , v,ctx . v,cty

and v,tc z which can be combined by addition and subtraction to

zive [2]

2 +
A,CC " a4V I ._ + a 5 A,zz Fx,y

2 r + a2rr,ct = a3A,zz + aS A1 tzz

_'Cc = a3 v12F + a5 '_'zz ÷ al v2_ + Fx,x

(9)

(lO)

(11)

vhere the new vaziablu are

A m V, x . U,y

r = W, Z

._, m O, x + V,y

(12)

represents the z component of rotation, F is the strain in the

z d£rmction and (r + _) is the dllacaclon, all in accord_tace with

standard definitions in eltst/_ICy. Fhys£cally, the fact that

a separate equation for the z rotac£on can be written, namely eqn.

(9), indicates that the propagatlonof _besa cocatlonal _aVes is

Independent of the other possible modes. The same is not true

for the dispLlcmNnt functions r and $, s£nce eqna. (i0) and (ii)

cannot be decoupZed. The a's are constant6 glv-_ by
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C33
a2 " -_- , a 3 =

C44_13

0 , a&'. ZO , a$

C44

0

(13)

and :_ is the laplaclan operator _- U_O _4...._ ....... k _,P

2 .2 _2

m _..3...+--_
_1 _x 2 _y

(14)

If eqn. (2) is subsclcuced _nco eqns. (9), (10) and _), the

asymptotic soluti_ can be obta_ed by usin8 Fourier _tesrals and

the method o£ stationary phase [12]. Basic_lly, eqns. (9), (10)

and (11) are written in term of Fourier intqralJ, la doing this,

plane wave solutions are assumed with aoaociatedwava nunber vectors

that are ropresented by their components a alone thax direction,

S alone the y direct_on and 7 alone the z directlon. _-.,,.n, .h._,_

values of the Fourier integrals are approx_uated by their residues

such that the stationary points are detsr-x£ned by the singularities

of the £ncegrands. In ch£s approxlsation, cer_ £n_ol_In_ _h_

factor i/r 2 (where r is the radial distance from the orialn to P the

point of interest) are neElected. Thus, the expressions obtained

are adequate for the calcu/ation of the displacements of polnC_

in the thus defined far field. This leads to the followln_ results [2]

, .. o it]2 exp [t(_x+ _y + vz _,c)] (15)2-riNl(IZG:'
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N

"7:7 :
n=l

2
Yn a3-An i F° n

i_i (IK_I) z/2 exP [ t (=nz'+_nr_"YnZ-'t) ]
(17)

where the s_mbol I : denote "the uSnttude of". Nov _, 6 and _ are

the wave _umber components defintn8 the s_Sularicies of the tntesrands

in the lntearac£on process for which the residues are caiculeced.

FAn. (15) represents the res£due correspoudtnz Co s s/._le s!nr_srl*.y

point. For the equs. (16) and (17) the wave ember components are

fell<reed by the index o indicacln$ chat it to poeelble co have more

thms one slnSular£Cy point mzd in th£s case t;he express!,--,j for _ a.-.d

," represent the stm of the residues correspond_ co each of the

s£nsular_C7 points. N is the cecal number of stnguler£cy points over

which the sumuclon muse be performed. ._so

d " a4(_2 + 62) + a5 2 . _2 (18)

!:t - [c2,.+ c,s2. c .ylzf2 (19j

ff= [a572+a1(a2+_2)._ 2] {as(a2_2)+a2%2-_2]-a_>2(_2+_ 2)

(20)

-I.0-



÷ 2 ÷ 2 1/2__I " (._,_ e,_ a,_! (21)

c,_-2G._c,_c,_ G2

% - (G2_ + G2,.)2 (22)

2

(23)

r2 . x2 + y2 ÷ z 2 (24)

The values KG and KH are coumo.ly known as Sausslam cuLrvature.s [1],

and the comb£nat:ion of I_--_Iand f]K i)L/2af:e: ._.,,_4_._,,_ r_
_ a.mt_e .t. _,b 6tm_ _. dk, V _ Ik_d

is usually expressed by

1
m m

'TH )1/2

- 112

I 2 ,H,g£(H.aB,¥y-2H,eN, g,_ +H_yH,a ) i
' • I

(25)

A is a phase coefficient that is determined by the geometric properties
n

of the H s 0 surface as follou8:

a) An = + I if KH> 0 and ___ is £n the _-r dlrecclon;

= • 0 and VH £s in the -r dtrecc£on;b) An - 1 if KH



c) an - + I Ig K_ 0 and B = 0 iB convex in the _direction;

and

d) An - - I if K_ 0 and H - 0 is concave in the 07R direction.

The values for A can be determined only b7 n_erlc_l c_Ic'_I_IoL_
rt °

As m_tloned before, eqns. (15), (16) and (17) are residues or

sums of residues resultin8 from the integratlon process. In wmve

number space, G = 0 and H - 0 are surfaces _on_ai_l_ -''

values of wave nuxJbers that are able to generate such r_.sldues,

considering the elastic properties of the _terial. Each pol_is

(_, B, _) on she surfaces can then be ag_oci_t_ "_'_-_L_a pi_tlc_ar

wave train in a partlcular titration which effectively contributes

to the dl_lacemeut functions. It Is lJ_ortant to observe thac the

U- 0 surface is in reality a qu_rtlc of _eo sheets [2]; so _ - 0

de_Ines t-_o surfaces.

According to the method of stationary phate, she displacements

a¢ a po/n_ p in the medium are c_cu_ated by staining the contributions

o_ plane waves passing th_ush such a point [I]. These waves and the

corresponding wave numbers can be found by 1ocatlng the point

(=, _, _) or points (@n' _n' _n ) on the surfase_ G - 0 and E - 0,

respectively, where the normal is parallel to the direction OP (In

Fig. i), which corresponds _o finding the singularity points that

_euerat_ _he residue8 for she specific polnt F.

-12-



Note chat norsa_.s to the G - 0 or H = 0 surfaces at more than

one point may Lle in the atom direction (paralLel to OP). in such

8 direction waves of dlfferenc ° " .......

vector) and spacf.nSs (maKn£tude of vave nuBber vector) can be super-

posed and for ch*s reason the su_a(_.on s_Lsns appear in eqns. (16)

and (17). It must be noted chat thls r_msrk _."...... u_. -'p_ly _f "_'_.s

po/nts are slmply symaetrlc m--_:-, as (a, B, _) end (-a, -8, -_) vh£ch

correspond co raves of t:lm same set:ring and spaclns. For the so].uciou

sacisfy_ the rad_.aclon condition, o_y onG o_. of a_h _h ""'w,--

of pohtCs /.s selected. C,atomecriea117, the surface G - 0 for 8

transversely isocrop£c medlum 18 an elllpsold and as 8 conJequeact

there ts only one polul: ou the surface vhere cY-= nora_ :s par-'LLZ@I

tO OP.

_;lch the use of equs. (18) through (25), cbe expressio_s given

in eqns. (I$), (16) and (17) for the dlsplacesenC z ..... J__- _-

rewlL-[ t_en as

_ 8 Fo[_2(a2 + B2) + a2 72]

4_r _ (a 5 q)I/2 a_

.x-p [_.(ax + Sy + _z - Jc)]

N 2 2 2
An t _ fo an[aS(_n÷_n) + a2Yn _ 2]

exp [t(anx + 6f(y + v z - _c)]

(26)

(27)

-13-



N

r -_ 1 _-_ 2 + Ynzn I An I Xn F° a n Yn exp[:L((snx ÷ "CnY
Wt) ]

(28)

",.,'he,re

2 2
q- a4(a + 62 ) +a_ .2 (29)

The displacmencs u, v and v can be _,acer-,In_ by- asmmlni fo_

compatible rich eqn8. (26), (27) and (28) such that eqns. (12) are

satisfied.. Since the dlsplacema_t funccLous are of expoum_tlal

fore, tdmsttcal expoues_tlaZ fo;"m; are cl_ie_ to _'@prrzJi@ett f.he

dlsplacements as

u - k I A + k 2 _ + k3 (30)

v = k4 ,'_ + k 5 A -,'-k 6 (31)

.. k7 r + ks (32)

where ki Chroush k8 nre constants co be determined. If the

der£vactves of eqns. (30), (31) and (32) are calculated and terms

tavolvl_8 the factor 1/r 2 are ne_iecced, the substitution of the

resulting expressions for che dertvaC_ves 1rico eqns. (12) glyes the

values of these constance as

-14-



._ an

kl " k2 " L(-_2n4. 8 2 )i(S2 + 2)

a k5 s -- n
k4 - £(52 + 2) 1(an2 + 8n2)

(33)

(34)

The constance k3, k 6 and k8 are deteruined ustn8 tbe rad4at£oa

condition presented earlier. Since there are no sou:ceJ in the nediun

e_.cept aC the orig., the displacmencs ac _fsnlty uq8_ v_teh:

This 18 pou£ble ouly if the constants k 3, k6 and k8 are zero; so

k 3 - k6 - k8 - 0 (36)

Therefore the final expressions for the dXsplecenents are

(B 2 ÷ a2) 4wr _ (asQ)l/2a 4

+ --,L-1 S _2
2,r _ n [aS(_n2+_2)+a2 2 2,2 "2 An Xn Fo _'n"_
. n-1

exp[l(_nx ÷ Sny+ vnz - n_)]

(37)
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2 22
• a Fo[a4(a2+82) + aSy ]

(_2+_2)4.r _(aSq)l/2a 4
exp[tC_x + By + _z - wc)]

N
1

n=l

3
n n 2 _

2--. _ An ;kn Fo[a-(a2+62) + a2 Xn 2]

exp [t(aux + eny + -_nz - _t:)]

(38)

(39)

Observe ¢hac a differen¢ procedure could have been followed

co obtain che expression8 for the dlsp!ac_:s. _c_]._ :,k_ t_

expreselons _ eqL_m. (12) relate ¢be dimpla¢_C8 u, v aM w with

the d1-_p1acemenc funccions ,_, I"and A. Tl_en, from the mq}ress_Lon8

• #3 ")_in eq_. (26) (27) and (28), l:he s),sI:em rep.'es_:ed b7 e_. _.._

could have been molved by d£rect:" £nce4_¢acton. 'l"bts procedure

Is nmch,,m,,clca.].ly more complex than the uecbod of assualn_

ex_ouenc£al forms for u, v and v and decer-.J.nln_ _a=.o_'-_ -" ......... ...,

done here.
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.lq__ r- _ITY ,AND WAVZ 5UILTACZ

In order to understand ohm propasatlou behavior of vave_ In

antsotcop£c media, some concepts concarnin$ the piane wave propasatiou

characceristlcs are reviewed be!or. For Oh-as, c-'-,.si _'" _" g°""_

equmt£on of motion for an anisotropic medium when no body forces are

present. From equ. (8) _r£thFj " 0

CiJpq Up,qi - Cuj,tt = 0
(40)

Assume a plmse wave front of the form [5]

. - • x_- ic_i2r]

vhere @ represents a characteristic v£th unit nonutl n and scalar
"T

phase velocity [c_J along the no,-'n! A4...,.,..,,._ _o.,._,. ..h-., ,i,,.tm_&qbqmtm_e_ 6 _eB_qm_ • _ b_b _l_vam

character£stlcs represent the rove front in time and space. By the

theory of characteristics, the displacements are functions of _ such

chaC the spatial dependence of u Is as n • x ."-T --

For the nontr£vial solution (that £s, for the ptopasatton of

the front) the "characteristic condition" susc be applied. Th£s

condition can be vr£cten as [_]

"ClJpq _:'1 _'q - ;_'c _tp I " 0
(_2)

or subscitutin$ the derivat£_,s -.coo: _.n& eqn. (41) into eqn. CA2)

&Lvee

-:7-



tCijpq n L nq - z 6ip I . o (43)

are the projections (direction cosines) of n In thewhere ni and nq --r

d£recti_ £ and q, respeet£vely, and 61p is the Kronecker delta.

The solution of _qu. (_3) is an etSenval_t p_obldm for the phase

velocity J_for any specified direction u . In senerLL, :here are
-r

three velocities (chac is, eiSewTalues), distinct in masntL_ie for each

15 o
-T

Nov suppose thec the ac_al point source Introduces the acltatlon

:l.nco the med:f.um. If couqpoeAtiou of plmse rave fronts As used to

represent the actua/ dlsturbal_e frout, _COtql_lt8 to Hunen:s principle

[5], the front can he traced ouc by the envelope of plsne uave frmscs

as £f _ wre Seuerated at the ortlltn 4n _L1 poes£ble dtreccJ.o_8,

• c c_ne c = 0. So the nomals n of the compo_t plans fronts must-r

assune all poeaible directions in order Co mmep the entire space

• round the source. For each direction n a nay decernlnant of the
"T

fore shou: ta equ. (42) is Zenarated and three new eisenveLociciee csn

be deceruinmd. Polar dtmsrmu can be constructed for each of the

three velocitiu as £_:nctions of the correspoudJJz8 nonml direction.

The surfaces expressed In poLsr repreJenea[i6_ (d4_$raus) are csiie_

the velocicy surfaces. Moreover, the envelope of plane wave froncs

• c unic 'c_ne _ cLLled the wave surface [3]. There is • correspondence

-I8-



bocweeathe veloctc7 surf&ca and the uave 0_/_sce such chat if three

veloclt_ surfaces exist, the same number of wave surfaces can be

$aneraced. The existence of three surfaces Indicates thaC there are

three possible modes of propqaCtou, _ach mode with _te per_c_J_r

phase velocities. If _ust one node weze co ex£s¢, the phTstcLl ueanin8

of the wave surface could simply be seated as the boundary beCtmen

the d£smsrbed end ur_£sCu_ed r__g!.__s _ _.._.e _me_di,_ st _rn_e e__me_ale.at

che source /_ sac lace actlon.

Cons/dot nov the eiaenvectors correspoudinl Co the eisenveloctcies.

The m_mecry of the form tn eqn. (42) tndtcatee that the etSenvactors

(chat is. dtspLaemeet modes) correspoadln8 ¢o each of the three

eilenvalues a:e lU_llly orthoaouaX bin: t:= Seaeral none of tlMll is

para_lel co the wave front norml dlrectlo_ _ f.2,$], If o_e of- _..he
-x

etgenvectors is cotnc£denc v_ch the _ave hemal dtrecc4on _, the

correspondtns d_plscemmnc node Is purely lou_tcudinal and the above -

_¢_ui ortho_OmLL_ty ensures th_c ,:he r_n-_!n-!_ _!,-_!x-c--_-- •- _mo____,__

are purely cransmerse. This condt:to_ i8 fulfilled for all wave

propasaeton d_recc_xms 4n £socroptc modLa _d_ere each o£ the wave

._rfacea can be assoclaced _ith a pure prop___a_.i_ _mode. n_ely,

one ImsSlcud/naA mode and _ transverse modes ,rAch _q_peudlcuLar

polarization planes.

For the transversely tsocropi¢ medium _s opposed co the f,socroptc

nedtu_, the e_eaveccors are noc coincident _r£ch the wave normals

In all d_Lrecc_,ous, so plane wave fronts trave_ alerts direcC£ons

oblique co che_Lr nonml n [5]. Th_e means chat: the modes of
-'T
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propasation are eoabinstLcus of lougLtudinal and transverse modes.

Exceptions occur for cer_&£n directions. These d£recz£ons are:

(I) the principal dlrect£on pe:ptudlc'_ar to "_'_,_--_vv,_•...... _- pl_ unQ--"

(2) any direction conca£ned in the Isotropic plans. The values of

the velocities for these directions, accordLn8 to the convention

adopted for the _oord/nace axes, are _i'.'s_ _.-. T_la I.
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SI_MES$ SURFACE

The condition given in eqn. (43) for (he existence of the solution

of the equation of notion given £_ eqn. (40) can also be represented in

terms of sicknesses. The slov_ess • is _._.._3v aJf4._ Jo . v._.

_ose emgnitude 1$ the inverse of (he velocity nqnitude Ic_l, and whose

direction _m the same direction of _, or

i._l - ul _l (44)

For a eystan wLth three different veXo¢itie• (here ere three such

slmmess vectors.

Accordln8 to the foil of the ars_ment of the _mve frout function

in eq=. (41) 8rid the deflnlclon In eqn. (_), the couponenc of s 4,

the direction i, s i, can be written at

•i = hi/[c_l (45)

Subsc£cuC:l.n K eqn. (45) Into _in. (_3) gives

= 0 (46)
Icijpq st e_ - _ 61p_

solution for ctm $loumss_:es it C,"4 _ a.s :_e _olur.i_..for

(he velocities. As before, £f each direction £n space is coni£dered,

three surfacts can be traced ouc vhlch are the reclprocals of the

veloclcy surfaces [3] The resulC:Lng .... #....

surfaces. Each radius vector frou the ort_/n ¢o the surface on the

slouness surface has its ¢orrespoudins inverse on the veXocicy surface.
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The 81mmeu surface 18 then an aIternaC£ve way of I_mmtrtcally

represenctns the propaption cheracterlsClce of =atertals. The solution

for sXmmess Is often prefefmd¢o the 8oluClou for velocities eLnce

the former involves simpler alsebralc transformations. Th_.s aqumen¢

_s supported by the face chat the deteru_LnanC from eqn. (43) leads co

an ezpression of C3N_Lfch order In ohm veloclcAes as opposed Co the

deceruinanc free eqn. (66) _ich is a sLzth order equation in 8115].

_ca/A, the case under study is chac of a cransve;sely 4.^,...,..f_Pv b_. VVdk_

medium subjected co an osc/.XLacory polaC source. The mot/_m Is

represented by equ. (9), (10) and (XX) In terms of the varinbXan A,

r, and a The sloeness _rfaces can be Idenc_.flsd ,-_ t_ _'" ..... "-"• _ &I& Qgllt, J.4LL

equations (9), (10) and (11) are vrttcan in cerus of their Ymsz_er

transfores [1], and the f_veree cransforus _rictan for each vartable A,

r tad A. In the /averse transfer: express1_-_s, t_ a:_r_/_._ "_

:, S and _ definins the einfpularXcAee of cbe incqrand are aucoaatically

the eXmmese surfaces.

For che varLable A, the assoc_tted sl_nez8 ...--.-:---.,.._ ,0"- "_-_,:_ :

surface vhere C Le 8tyros in eqn. (18). This surface wtll be CLlled

SH. For the variables 1" and &, the rcsmtnJ:_ s_omsess surfaces ere

represented by H " 0 vhere H Is g±ven _ equ. t_n_ u_._7¢=, --_.----qkemv# • (k.d.IMS d. M_

are csm surfaces chac satisfy ll - O, resuXC_8 in eve sXmmes8

surfaces (2,$]. These Csm surfaces vi.ll be called SV and P.

The physic41 mmm_ Of Che SlO'J_lS J_J_tCeS _u c_ _ ], _._

be better pursued Lf the isoCrOlPtC medium case As cone/dewed. For

£sot_opic uUJterlLLs
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aI --a2, ah - 85 and a3 - •l --s5 (47)

Further it can be shoun that a11 three slc_uess surfaces are spherical.

Sv =orresponds co purely rotational raves (purely cransvers_ _aves

if plane raves are considered); SH corresponds to purely rotaclonal

waves (purely transverse waves If plnne waves are cc_ Idere_i); end P

corresponds co purely d£Zatacioual waves (purely 1onaiCudlnal v_ves

if plane wmves are considered), _reovet, the surfaces SR and SV

are Idenclcal, sman_ that shear waves with any polar/zat£ou have

exactly the same behavior in isotroptc smalls.

formally, the £demtiftcactou of the surfaces SV and $H can be

accomplished by the corresponding /_tersect_onz _rlth coordinate axes

as follows: SB is defined as the surface that contains the shut

mode for plane waves in che x direction or the z d£rection wlth

parclcle displacements in the y dlrecclon. SV is the surface that

coucalns the shear mode for plane waves in cht x Jnd z dIr_Clon6

rich particle displacement in the z and x directions, respectively.

F_lT, the slotmees surface P Is defined as the surface that

concaves the ionS±tUdlnal nodes in the x and z d.r._.,,.. "_"

corrulxmdeuce beC_en rave number components (_, _, "¢) and

geometrlc coordinates (x,y,z) is aalncalned here.

For cransverseZy tsoCroplc sedt_ the ..... "---' :.'_J J"'"^"_kIJ_4_ d_U_d, t6 J..L6 t.._w _6._

propagation modes correspondtnS to the slotmeas surfaces are not

pure, since _n general the dispLsce_ent vectors are not aligned

-23-



wi=h the nozsmls of the plane front nenents that constitute the

wave front. For wave propae•tion in the principal direction8 of the

medium though, th• waves can be purely rotstlo_tl or _re!y

d£1•t•ttonal. Specifically, the plane wave prop•eat£on •lone •

pr£nclp•l direction, the rotational mode corresponds to • shear node

and the dtlJtc£ooal =ode corresponds to • longltudl_11 mode, _'-'s=

as for the isocropic nedtua. The identification of the surfaces SH,

SV and P Is done te expia_=ed above, by the intersections wXth the

principal directions, An ttluscratton of the s!.--w_ess o...e._., c..

a cransvermely £sotrop£c nedtun £s shosm in Fie. 2. Observe that

the values of the slowMueu at the £nterNctious of the surfaces

•rith the coord£nate axes are the inverses of .h..:8 p_Sa "-''""--v m_btJ_ &t. J_lm

presented in the previous section. The character of the correspond£n8

plane waves aloul the principal directions is also skatched, 8howin s

prop_at_J.on and Imrtlcle d_place=en-, a_....4_.._& qp_ b 4bv_ e

-2_-



GRO_ VELOCITY
, |L

The group veloc£ty U (or veloc£cy of enersy propa_.aeiou) for

the $enera_ anLsocropic ledima can be b-rtcten accord:Ln_ Co _ylelsh's

eners"y arstment [13] excended t:o three dlaenslonal propaEaCion as

[1]

7G
t_ - _ (48)

-_t _

where G £s given by eqn. (!8) and _ _.as "_" a_,-..,-,-4,-,,, ,,f _t: ,.,,.

equivalently, the same dXrecctou as the normal co tl_ slowness s_rface.

For poLncs on the slowness surface G = O, eqn. (48) can also

be trr£ccen as

U m-------
-- k*TG

(_9)

_here k £s the rave number vector (_, fl, _). Observe chac the

corresponde:ce becvee_ the uave number vec:or a_d the slovness vector

_s [!,3]

k - _s (50)

such chac k and s have the _ orlenCa_1on. ,_._ p_;_ ""'--'°- _"

the k d£recclon can be represented vector_lly by

.k

c. Ik_: 2
(51)

-25-



If eqn8. (49) and (el) are compar@d, it can be seen that

Thus, the resultant of U in the _ dlrecc£on is _, vhlch is

equivalent to saying chat the velocity of energy propasat£oa in

the direcclov, nor_l t0 _he rave _,_,_ .o _, Lu th_ phase

velocity.

Eq_s. (48) throush (52) are also valid for che tvo other

elovness surfaces. The see results are obtaLua_i ££ _ i_ :eplaced

by S in Che eqne. (48) chroush (52), provided thac k:lJ oaken

accordin&t7. Thus, there are three pha_ velocities and chree

Stoup velocities for each d_recclon in the lediua.

A1chou_ e_n. (52) is satLsfied, eqns. (&9) and (51) t_d_cace

that O and_ are differmtC. There Is a componmst of enarSyveloc£cy

/n the direction paralle_ to the vav_ _ronc, _ chit _e_y

transmLasion is not in the _ d_rection as rave action. This is

true £or aedLavhera the phase speed varies vtth direction [1].

Thus, plane raves oblique CO ch_ pr_ncipa_ d_rece£ons can propasace

along chmir ova normals ouly if enersy is _lso supplied in a direction

parallel co the wave fronts.

-26-



APPLICATION EXANPLZ

MaterLal Description

As an appllcatlo= example, 4 ,.,_aa4_.**a..el _m^e4e.._e..4.1

WaS chosen. The mmterial was 3N Scocchply type 1002 fibez_lass epox_

consiscin8 of unidirectional E-glees in a 165 ° ¢ curing epoxy

=acr_x. The c_=posice prepreg _ape was curQd In a he;_ pc--s; a_

0.69 106 N/m2. The resulting resin content was 36 percent by

ve£sht [18], The properties of such coaposites depend not only on

the volume fractlon of the cm_ponenCs but also oQ _ha c._..,...,,.,.--&gtl& J,4,Ail. 3,qJl&

nethod. Since knowledge of the elast£c properties of the macerial

vaJ necessary for the numerical calculations, samples were

tabrlcated for expez"Iments. UIcrasoD/c-''_'_" _P ,c _ _1

used for the exper£nenCal u_tasure_euts, relating rave speeds and

elastic cons_ancs ¢ij. The rave speeds vere deters/ned in the

_hzough _ranmLieSlon conflgura_1on u;i_ _r._ burs:; := ..... ""

either longitudinal or shear waves. The test| were perforaed at

frequencies from 0.5 to 2.25 Mltz in increments of 0.25 MHz.

The cesc speclmms were cur £n the form of rectangular ""_"w_--_

vlth unifom square cross sections from a 25._ as thick composite

place. The cross-sectional area was square with ].2.7 :a sides.

q't.,

The leuSChS of the spec_aens ranged from 2.54 -- _o 25.: m. ,,,:

test spechaen axes were orienced ac various angles w1[h respect

co the fiber direction. The e2astlc conscancs were deter:ined
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From the measured longitudinal and shear rave speeds. The

exper_encel values for the e!ast!_ ...,_,_o_,_o*o--oare .4.-- _,4" T'-_I_ 26d.v f.a& •

The convention adopted for the transversely lsocropic medism

in Fi8. 1 was zutintained here, so the z axis corresponded to the

fiber direction. The density was 1850 kK/_ 3 -"- J'--_cOru_u_ tO [hi

mnufacturerts data [18].

Slowness Surfaces

The slowness surfaces for the fibersLass epoxy mtertal were

calculated from G - 0 and H - O, where G and R are 8ivan t. eqsm.

(18) and (20) respectively. The forms of theme oquatious indicate

thac both the surfaces are symetrtc about _ for a rect_

coordinate system a, 5, and "¢. Thus. _ order to decarntne the

surfaces, only their intersections rich the a-y plane need to be

calculated. Then, the mstire slmm_ss surfaces can be 8enerated

by revolvinK the intersection curves armed the "_ axis. &idicioually,

the Intersection curves of the slowness surfaces G = 0 and _ = 0

with the a-y plane are s_mecrlc with respect co a axis, which can

be checked by seccln8 _, = 0 in eqns. (18) and (20). Sy the

combination of all s_uaetries, only i/& of the intersections o_

the surfaces on the a-y plane need to be calculated. The posi£1ye

quadrant was chosen for the calculatlon.

The ranges of the variables are llm£ced by the values shown

Ln Fig. 2 vhich can be obtained by setting B - 0 and alcen',...ate!7,

one at a time, o = 0 or _ - 0 in eqns. (18) and (20). For the positive

quadrant the l_uics are:
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For sZmmes8 surface SEe

For elotmes8 surface SV:

For slmmess surface P:

0 _ _< I/(ah) I12 0 c _ _ II(a5)I12:

0___<_< 11(as)I/Z 0___<-_ < /(a5)1/2; aad

)112 0 < _" < I/(a2 )1/20 _<_. _< l/(a 1 - w - "

surfaces are 8enerated by the successive coabtnaelou of the

pairs Ca,x) satisfying equ. (18) for SH and eqn. (20) for SV and P.

talK. 3 shows the slowuess surfaces eli, $V a_d ? ..,'--._.,_.....-f'_"-

slass epoxy composite. In YrS. 3, points A and B are the so-call,ui

parabolic points on the 8Zm_ess surface. At these points, the

$auselan curvature based on eqn. (23) £s zero. --------_---s,

are tnflocctcm potntJ on the sZoguess surface, rot the po£nte of

zero pusslan curvature, the _p11_ude coefflclew_ Xn(whlch corresponds

co the Inverse of a decay factor along _he dl_'ac_1.-_ =f :h_ =:.----tL

to the surface) goes co tnf:tntt_ which _muZd K£ve infinite

dtspZacesent. The physical Lnpllcattons of the existence of such

polncs can be better understood by _lyzlng _he _;a-,,'e s'_.eacez.

Froa the values obt_Lned for slmmessee, _he velocity surfaces

vere calculated using eqn. (44) and are shown In Fig. 4. The

ve/oclcy surfaces, mmely V(SH), V(SV) ar_ ,,t_s ......._._ .0,_o_,4_.1_

_o :he "/=verses" of :he aLmmess surfaces SH, SV and ?.

_ave Surfaces

The wave surfaces r,_n be dlrectly obtalned frou the elovness

surfaces. I: can be shmm [I] that the coordinates x, y and z

of the wave surfaces can be calcu_ed fr_, -G,JC, , -G,_/_, ,

and -G./G,_, respec_Ively, for she rave surface cor_espondln8 to
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the slmmens surface SH, and by -H,a/H,w;-R,8/H,_; and -H,/H,w

for the_mve surfaces correspor_,_ :2 tha ;lo_,8 iurfa_ai SV

and ?. rlS. $ shows the rave surfaces as c81cu/Ated frou the

slmmese surface8 SH, SV and P. They ave surface W (SH), vhtch

corresponds :o SH, has the malZai_ ph_e v_oc£[£aJ. Tat wave

surface W(P), vhtch corresponds to P, has the larzest phase

velocities.

Am shous tn Fie. 5, the rave surface correspo_t_ to _Vhas

two fin£te Cusp_bLt edses [1,$]. The points at the tips of the

cusptdal edles correspond to the _lectiou poln_s A snd B sbotm

_Ln F18. 3. The directions defined by the lines from the ot/4r_Ln

co the tips of the ¢usp_181 ed8u (FtS. 5) repremmt the

directions for vlh_Lch the solution £s noc val£d. These directloum

can be found co be aC 41.g70" and 62.545" _h reepecc to the z

zzts. Since the rave frouts are 8eomtrtcslly sf_llar in t_e,

the cusptdal edaes vLll be LLways located in the sane dtrectiou

v_th respect Co the coord_mte axes. Observe chat for dlrect£ous

beL_a4m the angles deflned above, rsdll frou the orig!n Co the

W(SV) wave outface may asinine three dLstiact values as can be seen

In Fla. 5, Ind£catln8 chat there are three contrlbutlons for the

d£splacmmmts of polnts in thls reslo_ of space. _ ¢¢n:rlbuC1_,s

arise because ,t t8 possible to find three points on the

correspoudtu$ slovuess sur_acevisere che notuais have the sam

direction, according to the method of scattona.-7 p_ze. A_ a
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po/nt P in • direction :La spaclt bltt_lMtn :h8 "-':-" _: o:no .._ _o :A:4hl_db_ dke _# _9 _44_S _dDo_9_p

three plane trove f:onts can be seen trmltn 4 81on 8 the dlrecttou

OP from the crt81u (where the excitation is located). Thus, it is

poss£ble to have plane rave fronts of different orlentatlo-..-" ;_

differmat phasL velocities pas81n 8 chrc_qlh the _ _int in the

wd£um at dtffer_t times. In reality these plane vsve fronts

are se_sents thac constitute the actual rave front.
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DispLecmnent Calculations

The displacements in a transversely 18otroplc mdlum subjected

to a point force excltatlOl_ as shown in Fill. i _tre also calculated

for the flberSlaSs epoxy naterinl.

A c_tputer pros=ms vas written that calculates l:he displacesents

ac • Siveu point P(x,y,z) in the uaterial. The fullovtq steps were

performml=

(l) Search for the point or points on each of the slotm_s

8urflClll in which the outward DOLSlall are para]_@l Co th4t diJ:ect:Losa

OP. This is done by comperinll r_e dtrect£on defined by 0P u/th the

dtrecttou of the Srmii_ts co the slmmess nrface8. The pro_an

reca/ns the closest valmm to _ direction _Lm (ram value for

slmmess surface SH; _p co three values for $!c5n_1 _,._.ar.e _ _,d

up to _dO V81Ue8 for slmmeas surface P, In accordance vtth the

possible number of points hsv4_ll the same morea1 direction). The

rave mmbers are deteralned frou the _--.-...-._o_'_A4"°e°°v.^c ._,.e °.1...._

points on cite slmmess surfaces vtn eqns. (_8) and (20).

(2) Check the s_LSns of the Sa_sian curvature end the

d4ractioa of the llradlent vector of the s_-o_.ess -,.-+ .... .k...
e_4k4. 41_nlG_D • IDLlt611

establinhlnll r_e resultinll phase coefflc£ent A .
n

(3) Subst_ttuce into eqns. (36) throullh (38) the values found

for ,,, $ and -f and An above and calculate _ .... _""" .... '= ""-_"_toS4t.& .li.li,l'l.l,41.,.il.S.l'llll q.P& lllJliGitii

slo_ues8 surface ¢o che dts_acements u, v and v.
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Point. in space were choseu ud the ¢ozT__lt 4tepl_ceu_te

o_L_ted. For simplicity the points wre piaced on the coord_ce

p].lDell.

(1)

(2)

The set of points chosen were:

On the xoz plane, poincs 8].onl tile arc x 2 + z 2 - & a2• i lUd

Ou ohm x-7 piane, polnts along the arc x 2 + y2 . & a 2.

The frequency yam sic at 1 }_Hz and ; Zoad (_0d7 .v._./6----_ v.-e

unit amplitude (F o o I N/ks) yam applied. From eqna. (1.5), (16) and

(17) Lc can be seen chat if any of the Ssuslian curvatures tl zero,

4 _q4r 4,q4 4*mthe correspon_s8 dtspLacem,_c funcclou zSS_leS an ....-_.. v&1-t.

It is knmm physicaLLy that no point in space -,,y undmr8o am _inlce

displacement since the amplitude of izcite¢_ol Yo Ls fiJ_Lte. It can

be _ [2] mclanmCtcctly chat cha dlscouCC_u_=_ts can be e14-,_natsd

and the decay of the dispZacmnsnt ampl£cudas JJI found to varT 8o

-516
r . In order to generate the amplitude coeff£c£euts, the poinVs of

dlo_ont_Jm£_ ou the s/ovums8 surface SV are "avoLded", vh£ch :Ls

equivalent co excludln8 the polnt| a and I) from the colcul4_tou ic.

F£gs. 6 ch_sh 9 ahoy the polar diagrams of the displacement

amplitudes for the points 2 m ave7 from the origin on the x-y plsne.

F£gs. 10 through 13 show the polar dtasram of the disp1acema_cs

8mpl*tudas for the points 2 m avsy frou the ori$£n on the x-z plane.

Observe chat by reasons of loadins sy_etry, v dis_/Aceuants for

points on the x-z plane are zero u _11 as v d£s.vlaceaencs for polncs

on x-y plane. The curves are plotted separately accord£ng to the

slovness surface chat generates the contribut£on.

For points on the x-y plane, the contrlbuc1._..s of the s!o_..e_

surface SV are zero wh£ch t_pl£es that there are no shear raves
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ptopsssc£n8 LLoa8 z d£rec¢£ou _th part£cle dlsplacel_ 1= the z

d£recc£ou. Also, there are no shear vavea propssetLu| alous the

y d£recc£on rich particle d£splaceme_t £n the z dlrect£ou.

The coacrtbuc£ouz frma the slo'.maes surfac_ P, F£Sl. 6 and

8, show that (1) there are pure lons£tudin41 raves travelin 8 81on 8

the x direction and this is the dtrect£on of saxlmm ampltcude for

u dlsplacemencs (as expected since x I; co_ucld_nt _-L_h _he force

1£ne) ; (2) no lonsltudlnal waves Crave1 In the • dlreetiou (zero

mplicude conponent of v d£splacemeat for points in the y direction),

and no shear raves _th y polar£zac_,_n travel In the X d_iou

(v dtsplJu:ImlQte azo zero /:t X dlrect:JLol_).

The contributions fr_ the zlovues8 surface SH, F41r_. 7 and 9,

shoe ck,,c (1) there are pure shear v.-'ves In t1_ y d£zect£on (riCh

x polarization directiou) buc s_e v displacements alo_j the y

dtrecc£on are zero, these are zr2md_ raves (y direction vibrates

8 8cx-XnS); (2) no Xou81tudinal raves cravtX £n tmy d£recciou

(zero ampXicude ¢otpon_=c of v diJplaceoeucs for poXncm Lu the

y d£rect£on), end no 8hear waves uiCh y polarization travel in the x

dlreeClon (v d1_placemnts are zero in x dlree_ion).

For points oa the x-z pXm_t, the coutr£bucAono of sXmmess

surface SH are zero whlch lmpllez that chafe are no shear raves

propapCX_8 auton 8 the I dXrecc'-on _'._h part£ele _isp_acmaenc in

the y direct/m1, Also there ere no raves propeKa_ln$ alon 8 the z

d_recCton vt_h particle notion in _he y d£recc£ou.
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The court/but/one frol the slovness surface bY. Figs. 10 and

11, show that (1) there are F_re s-_'-a: vsv-_- 4-u *.he z d!rec*.!- _ - Cv_o_-h

x polAr,zatlou dlrectlou) but 81nce the v dLsplacements alone the

z dlrectlon are zero these are standlns raves (s directlon vibrates as

•._.s_,,m,T 4,..v al ,._.t e-l_ab• strin 6) ; (2) there are no shear "4aYes ...... -_e --_--b -_-

x dlrec¢ion (zero aapLlCude coaTcnent of v displaceslnt in the x

direction) •

The ¢oncrlbutions from the slowass .._.c._. ? v,.. I, .._ I_

show cleat (1) there are pure lon_ltud4_.l raves propasst_8 alon8

the z directlou and the u displ_:munt amplitude a_ the • d£rectton

•04 e-*l 9,,-d..,6.,0" _ml • e..,,Io _k_Ls terser than the correspond1=_ u ---r-------- --v------ "_-_'-g

z direction; (2) thez_ are pure shear vavu in the z direction (vith

x poLartzar_Lou direction) but s£nce the v dtspl_cemeuts 8_ the

= directiou aXM zero l;hl,qie 8Yt a_s_A4_e

lJy observtnS tha polar dLs_tasm of d/splacemencs (F$ss. (6)

throush (].3)), It c_m be seen that there &re characcerist_c directio_s

d_f/n/nl; sex/ms for th_ dlsplzce_---=*. --r--------"_14_"_'" _.... ---,_"_"_'n"

l_rToses these 4irections are 11•ted in T_ble 3. [t can be observed

chat there are _vo _m/aa for the cont_"_butions of slo_mess surface

SV correspond4n$ co the t_1ec*.tc= _o_._*.S A .:"._ 5 _ F_.._. For

the contributions of the slovness surface P, the maxim occu= aC

eve ocher dtztinct posit_Lons. For the points on the plane x-y,

cbe mtx/ma occur alon_ the 1/re of force t,z --x!_- !CSe!. _) f-_. "

dtsplsce_eut8 except for the small coutribu_tou of SH (see FJLI. 7),
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and ac 45" for v dlspLsc_s as expected, s1_ce x-y is "...... "-_,ov _.£u_ ,I,_,.

Slotmess furface8 no_ iLs_ed in Table 3 have sero contributions to

the eor_espoudtng d£splacement8.

RaeallAns the relattoush£p be_ strain _iers-g _ dlsplacem_ut

amplitude (enezTy is proporciomsl co cbm square of amplitude), it

is clur chat for points in reS£ons of 18tier amplitudes tha eua_y

vtl1 asinine the ht_her values. The d_ffera_ce _-_en _£Jotro_ic

and lsoCroptc media £s that the _erK7 dens£L7 fo= sntsotropic medta

is not a ua_fora funct£on for equal solid anSlen hsvin8 verteze8 at

the orisin, constructed around dlffernc dlrQeclanJ L_ 6_.__ca.

Ltghth£11 [2] referred to this pbenomanou sayta8 that the energy is

"confined" to m cone /n SlSaee, or in other words, aost of tim

ener_ travels _ preferenclal diz_cclcmg. _ prtfermti8i

d£rectioua for the _Lditection41 ftbers1as8 epoxy composite are

ahovu in Table 3. 1C 18 undststoo4 that the uuucUm are the ce_ter

d£reeztons of the re81on_ aZou:_ v_ch _:h_ _x_rgy £o cO_=e_, b'_e_

the numerica_ process i8 carr£ed out the preferemttal directAons are

automatically deterntned.
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COBCIJJSIOMS

The far-field dlspl_c.ment patten in an infinite transversely

£sotropic aedlum subjected to an oscL11acory point force yes detera_ed

and evaluated for a specl.f_-c f!bersla-.: ._xy ---'--"- _- --'--"_-_t.w_ _ 4D bqb s A.l_ DIJe d. U t. dke./tA

describes the stress rave fleld in re=as of the 8eometr£c aspects

of the disturbance spreadin s by means of slmmess and rave surfaces.

The solution for dlsplace_mts a11_'-_ _h_ ""_''"'"

distribution as shown by the construction of polar dLasprms.

It van seen that the euersy free s polar source travels alone

radial directtous even If the rave surfaces ass_ _oBp_.teu _hipa_,

meanln8 that the phase and group velocities are different.

The existence of _-_ferent£Ll directions Is an Important aJ_ect

to be ¢onsLdered _ expe_lm'.G1 "_8._S-" are t_, ba -m...s,._.._'""-_

Kuovledge of the displacer field allmm • better choice to be

made for th_ positionLns of couponents of the moasur/._8 syetsm.

There appear to be no res[ric=lons -*_o-_-- "_

of this mthod to other tTpea of antsotropy. If appropriate sywn_cry

re_ations can be applied as in the case of eqn. (7), the same

procedures can be folloved for .k _o._-.-.-. _._ .^_,..._- _-

poss£btZity is &selective for use in the description of the stress

wave fleld of fil_ta_y composite materials v£th fiber arran_mnts

other than unldlrect_or._1.

Another possible appllcatloa £s the study of acoustic ealss£on

(_E) phenoaena £n coapos£tes or other anisotropic materials. It is

StaLl1 d_Jnens_ons occurr_nS inside the _a_er_al, and nor=ally
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camtaJJcin8 • ramie of freq_mcy compommc8. If the method is applied

for each cosponenc of frequency, JupQrpojlCion _ t_ _lid fo¢ _he

decaz_tzuttion of the field reeult_a_K from the AE source. Rnovledse

of the disp_scemmt field uctSht adlov inferences resard_a_8 the

source s_ch as strength and orimltacion, and cotmequeutiy perhaps

the degree of damaKe within the material,
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TAaLg i VeZoclCles for Plane Waves alon8 Ptlnc_pal
D1rectlons of Trmsversely 180croplc Kedia.

(x-y is Isot:rop£c plane)

Direction of

Propagation

x [

D1rect£on of Displacement Vector
X

• ]./2
(a 1)

, |

(a4) 112

(.$)1/2
= ,.

Y

i (%)i12

(al)112 (a5)112

(a2)112

The a I are defined in eqn. (13).
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T._L£ 2 F.laetlc Constants for Uuldlrectlom_ Flbet_lass
_pox7 Composite (Scotchply 1002).

Elastlc
Constant

Cu

, , ==,

t Computed Value fromkave Speed Nmmurements

j i0.s8o 1o9 s/=_

C12

C13

¢33

Cl.4

4.098 109 N/m2

' 2
4.679 109 N/u

||| IH u • ,

40.741 109 N/m 2

| i |n

4.422 109 N/2
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TAmLE 3 Potnco of l/axtmusa Dtsplacesent Amplicude for Lines
on x-z Plane and z-y Plane

Line Equation

x2+z 2 =4

x 2 + y2 . 4

Displl

U

.w

U

Slmmeee l

Surfaces [

SV
,l ,,,

P

SV

i ......

v SH
_-- _._--_._

I F

Location

I

41"; 62.50 (*)
|, ml

90" (*)

i

• 42"; 62.6 ° (*)
!

P 15 "

SH O*

P 90"

45"

45"

(*)

(**)
• el

(**)
|

(**)

Order of

Nsptcude
of Amplitudes (***)

10"8

10 -8

lO "9

xo-9

lo-e

10 -9
,

10 -9

T
I 10"9
L

(*)

(**)

C***)

Angles vtch respect Co z axis (in degrees)

_mSles rich respect co y axis (in degrees)

These maplLcudee correspond co a un£c body force.

-43-



Fig. I Schmcic i11uscraClnK slnusoldal polnc load
exclcln$ an infinite transversely IBotropic
mdi_m, _d_ere xy is isotropi¢ plane in car_eslan
coordinate system defined by (x,y,z).
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Z

P

SV
SH

a-wave number vector component in z direction

y-wine number vector component in : direction

ProIx]qalion direction of associated plane wave (along

principal directions)

_ -4. P_rtlcle displacement of associated plane w_e t_,^._,.....,
w

principal d irections)

rig. 2 F1ane representation of slo_mess surfaces for transverse17

Isocro_i¢ medium where z axis corresponds co the larger
elastic _onstant value and x-y is the lsocropic plane.
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41i,

C,t
b 5

eemw

"12
N

_c 4

i,
E
Oo(.t

,, | . ,.

SH

$V

P

8

0 ! 2 3 4 S 6 7

Component of slowness in x direction elm (s/m}

Slo_mess surfaces SH, ST; and P for unidirect£onal

fiberglass ¢oapos£_e for pos£_Ive x-z quadrant;.
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5 x iO 3 i i sl

fj

14

.S

i 2

Q.

0Q. 0 I 2 :3 4 5 x I0 3
E
o Component of phose velOCity in x A;..,.,;,,,, ,. (m/s,

_111; Ib* I 14,/I ! _]_

(J

F£$. _. Velocity surfaces V(SR), V(SV) and V(P) for
unidirect£onal flberslass composlte for

positive x-z quadrant.
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M

l

_Imml

tD Nqm

||
w

I;
:D
O
tub

g
(J

O
4m.

(=

4

3

2

0

0

W(P)

w(Sv)

a 2 3 4 5x_

Oistonce troveled by wovefront in x direction
in I second x(m)

Fis. 5 ::ave surfaces hT(SH), t.'(SV) and h/(?) for unidirec:io_.al

fiberglass composite for positive x-z q_drant.
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(5 x I0 "9

Amplitude component in x direction (m)

F£_.. 6 Polar d£agram for u displacmn_nt amplitudes for
points alon the line x _ + 2 . 4m2 due cog Y ,
slo_,'ness surface I' only.
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0 0.4 0.8 1.2 1.6

Amplitude component in x direction (m]

F£$. 7 ?oZar dtagr_ for u displac_le.nt a_ZLr.udes
for poLn(; Lions the ZLno x ÷ y_ - 4m_o due

co slmmess surface SK onJ.y.
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Ampli rude component in x direction (m)

?_8 z I0 °g

Fig. 8 Polar diasram for v displac_menc a_plttudes for
points along the 11.he x 2 ÷ y2 . 4m', due to
slowness suc£ace P only.
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8
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<Z

0
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i
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I " I I '!
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component in x direction _mn''Amplitude

Fig. 9 Polar dlagrxm for v displacc._ent _!!cudes for
points along the llne x 2 + y2 . 6m2. due co

slowness surface SH only.
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2.8 z I O's_
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I£

_ o.s

_" 0.4

0

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 x IO4

Amplitude component in x direction (m)

Fig. I0 Polar diagram for u d¢spiacem.enc a=plicudes for
points along the line x z ÷ z _ s 4m2, due to slowness

surface $V only.
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A

E
I

4

3

2

0

f
0 I

Amplitude

i,,
I • =T' | i

2 3 4 5

component in x direction (m)

-9
6xlO

"Fig. II Polar dlqrm for u d£splacemenc a_plicudes for

po£nCs along che 11he x2 + z _ - 4m2, due co
slovness surface P only.
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Amplitude component in x direction (m)

FtK. 12 Polar diagram for w d_splace_ent amplltudes for

polncs along the 11ne x_ ÷ z2 - &m2, due no slowness

surface SV only.
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surface P only.
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